【高一数学练习题及答案】在高一阶段,数学课程逐渐加深,知识点涵盖函数、方程、不等式、数列、三角函数等多个方面。为了帮助同学们更好地掌握所学内容,巩固基础知识,提升解题能力,以下是一些精选的高一数学练习题,并附有详细的解答过程。
一、选择题
1. 若集合 $ A = \{x \mid x^2 - 3x + 2 = 0\} $,则集合 $ A $ 的元素个数为( )
A. 1
B. 2
C. 3
D. 4
答案:B
解析:解方程 $ x^2 - 3x + 2 = 0 $,因式分解得 $ (x-1)(x-2) = 0 $,所以解为 $ x = 1 $ 和 $ x = 2 $,故集合 $ A $ 有两个元素。
2. 函数 $ f(x) = \sqrt{x - 1} $ 的定义域是( )
A. $ x > 1 $
B. $ x \geq 1 $
C. $ x < 1 $
D. $ x \leq 1 $
答案:B
解析:根号下的表达式必须大于等于零,即 $ x - 1 \geq 0 $,所以 $ x \geq 1 $。
二、填空题
3. 已知 $ \log_2 8 = a $,则 $ a = $ ______。
答案:3
解析:因为 $ 2^3 = 8 $,所以 $ \log_2 8 = 3 $。
4. 等差数列 $ \{a_n\} $ 中,已知 $ a_1 = 2 $,公差 $ d = 3 $,则第 5 项 $ a_5 = $ ______。
答案:14
解析:等差数列通项公式为 $ a_n = a_1 + (n-1)d $,代入得 $ a_5 = 2 + (5-1)\times3 = 2 + 12 = 14 $。
三、解答题
5. 解不等式 $ 2x - 5 < 3 $。
解:
将不等式两边同时加上 5,得到:
$ 2x < 8 $
再两边同时除以 2,得:
$ x < 4 $
答案:$ x < 4 $
6. 已知 $ \sin \theta = \frac{1}{2} $,且 $ \theta \in [0, 2\pi] $,求 $ \theta $ 的值。
解:
根据正弦函数的性质,$ \sin \theta = \frac{1}{2} $ 在 $ [0, 2\pi] $ 内的解为:
$ \theta = \frac{\pi}{6} $ 或 $ \theta = \frac{5\pi}{6} $
答案:$ \frac{\pi}{6} $ 和 $ \frac{5\pi}{6} $
四、应用题
7. 某商场促销活动,原价为 200 元的商品打八折后,再参与满 100 减 20 的优惠活动,求最终售价是多少?
解:
第一步:打八折后的价格为:
$ 200 \times 0.8 = 160 $ 元
第二步:满 100 减 20,即减去 20 元,最终售价为:
$ 160 - 20 = 140 $ 元
答案:140 元
通过以上练习题的训练,可以帮助学生熟悉常见的数学题型,提高逻辑思维和计算能力。建议在学习过程中多加练习,遇到不懂的问题及时请教老师或同学,逐步建立起扎实的数学基础。